Longest palindromic substring/lps.cpp
From PEGWiki
// Implementation of Manacher's algorithm (see http://johanjeuring.blogspot.com/2007/08/finding-palindromes.html )
// Thanks to Frederick Akalin (see http://www.akalin.cx/2007/11/28/finding-the-longest-palindromic-substring-in-linear-time/ )
// Brian Bi (bbi5291), 2010-11-14
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
template <class RAI1,class RAI2>
void fastLongestPalindromes(RAI1 seq,RAI1 seqEnd,RAI2 out)
{
int seqLen=seqEnd-seq;
int i=0,j,d,s,e,lLen,k=0;
int palLen=0;
while (i<seqLen)
{
if (i>palLen && seq[i-palLen-1]==seq[i])
{
palLen+=2;
i++;
continue;
}
out[k++]=palLen;
s=k-2;
e=s-palLen;
bool b=true;
for (j=s; j>e; j--)
{
d=j-e-1;
if (out[j]==d)
{
palLen=d;
b=false;
break;
}
out[k++]=min(d,out[j]);
}
if (b)
{
palLen=1;
i++;
}
}
out[k++]=palLen;
lLen=k;
s=lLen-2;
e=s-(2*seqLen+1-lLen);
for (i=s; i>e; i--)
{
d=i-e-1;
out[k++]=min(d,out[i]);
}
}
int main()
{
string s; cin >> s;
vector<int> V(2*s.length()+1);
fastLongestPalindromes(s.begin(),s.end(),V.begin());
int best=0;
cout << "[";
for (int i=0; i<V.size(); i++)
{
if (i>0) cout << ", ";
cout << V[i];
best=max(best,V[i]);
}
cout << "]" << endl << "Longest palindrome has length " << best << endl;
return 0;
}
Sample input
opposes
Sample output
[0, 1, 0, 1, 4, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0] Longest palindrome has length 4